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Using the formalism of the preceding paper, detailed numerical calculations are performed for the line 
shapes of paramagnetic resonances of chromium in ruby. Not only half-widths and intensities, but the fine 
details of the line shapes are accounted for, over a concentration range of about 0.01% to 1%. In particular 
it is found that (1) the dipolar line departs only slightly from the Lorentzian at the highest attainable concen­
trations, (2) the line is predominantly nondipolar at low concentrations, (3) no inference is possible from mo­
ments as to the magnitude or parametric behavior of intensities and half-widths, (4) neither exchange nor 
clustering of impurities affect the line shape at low concentrations, (5) exchange cannot narrow the (i,-J) 
transition. Various explanations for the observed residual width at vanishing concentrations are discussed in 
the light of these findings. 

I. INTRODUCTION 

IN this paper we analyze the line shapes of the micro­
wave transitions of Cr3+ in ruby, in terms of the 

statistical theory of spin-spin interactions which we 
have previously developed.1 Ruby gives considerable 
scope to the application of the theory, because, in addi­
tion to Cr-Cr dipole interaction, strong and fairly long-
range exchange interaction is known to be present,2 as 
well as interactions with the paramagnetic aluminum 
nuclei. Furthermore, the line shapes and intensities 
have been extensively studied experimentally, and have 
resisted interpretation on the basis of moments.3 

Following our previous method, we first solve the 
two-body problem in Sec. II. We can then immediately 
calculate as many moments as we please, and we 
illustrate the procedure in Sec. III. In Sec. IV we calcu­
late the line shapes in detail. In Sec. V we consider more 
specifically the effects of near-neighbor interactions, 
both dipolar and exchange. Finally, in Sec. VI, we offer 
some comments on the "residual" width, that is, the 
line shape that one obtains in the limit of vanishing 
concentrations. 

II. THE TWO-BODY PROBLEM 

The pair Hamiltonian is 

ae=a8H.(Si+S2)-z?(5,1
2+5,1

8-iS1
8-iSi«) 

g2fr (r.Si)(r-S2) 
+ /exchSl*S2H Si*S2—3 •]• (1) 
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The terms have the same meaning as the corresponding 
terms of Eq. (1) in Ref. 1. The g value is gu = 1.9840, 
gj.= 1.9867.4'5 The crystal field parameter D has the 
value 5.75 kMc/sec.6 The energy levels of the corre­
sponding single-particle Hamiltonian have been derived 
in detail by Davis and Strandberg7 and by Schulz-
DuBois.8 

We choose the crystal axis as the quantization axis. 
To avoid the necessity of numerical diagonalization at 
this early stage, we take H—Hz. 

When /eXch>#, we use a representation in which 
S rS 2 is diagonal, with wave functions and matrix ele­
ments defined in Eqs. (2) and (3) of Ref. 1. The zeroth-
order pair matrix consists of four diagonal blocks, 
corresponding to J = Si+S 2=3, 2, 1, 0. The off-diagonal 
crystal field terms connect only states differing by 
several multiples of /eXch- We treat both the crystal 
field and the dipole interaction in first order. In this 
coupled scheme, some of the allowed transitions have 
frequencies which in first order coincide with those of 
the main ruby line. Specifically, for J = 3 and M=3 —> 
M = 2 , A E = g j 8 i y - 2 Z ) ; f o r / = 3 a n d M - - 2 - > M = - 3 , 
AE= gPH+2D; for / = 2, all transitions have AE=gj3H. 
In Table I, we list these transitions according to the 
following notation: Transition probability=g; first-
order dipole perturbation=g-g2/32(3 cos20— l)/r3. 

When /exch<A the representation is defined by 
Eqs. (5) and (6) of Ref. 1, in which the crystal term is 
diagonal, and in which the pair matrix breaks up into 
completely unconnected blocks of even and odd linear 
combinations of single-particle states. All allowed 
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TABLE I. Pair transitions (coupled scheme). TABLE III . Moments for ruby lines, n = 0A%. 

AE=gpH+2D 
g Q 

3/2 9/4 

AE* 
g 

1 
3/2 
3/2 

1 

=gm 
9. 

- 9 / 4 
- 3 / 4 

3/4 
9/4 

AE~g0H-2D 
g q 

3/2 - 9 / 4 

m 

2 
3 
4 
5 
6 

am 

- 0 . 6 
-0 .0571425 
-0 .0285725 
-0 .0051940834 
-0 .001412215 

Vm' 

0.509X108 
0 

0.648X1015 
0 

0.2555X1023 

*) 
<«"»>!/» 

225.2 
0 

897 
0 

1716 

(3. IN. 

Vm' 

0.433X1018 
0.299X10H 
0.599X1015 
0.2016X1019 
0.2455X1023 

< w *>i /« 

208 
284 
880 

1150 
1699 

transitions now have frequencies corresponding to 
some single-particle transition. In Table II, we tabu­
late these transitions, according to the notation: Transi­
tion probability=g, first-order dipole perturbation= 
q-g2fi2(3 cos20— l)/r3, first-order exchange perturba­
tion^-/exch. We notice that 6 pair transitions are 
clustered around each of the single-particle transitions. 

The complete Hamiltonian matrices, as well as a 
tabulation of the dipole perturbations for the first 16 
neighbor shells, can be found in Ref. 9. 

III. MOMENTS 

Moments of any order are immediately accessible 
once the q's and g's of the two-body problem are known. 
They are given by Eqs. (47), (67), and (64) of Ref. 1. 
We recall [Eq. (47)] that the moments (aim) have 
leading terms — nVm', where n is the molar spin con­
centration and, according to Eqs. (67) and (64) of 
Ref. 1, 

7W '= (8T/9xQv)tnlam(g^xo/h)™j: gjqr/Z a, (2) 

+-£(-)" ml ml &=o 

x(3*-*E-^Y|. (3) 

The quantity #<f"1/8=*o= effective nearest-neighbor dis-

( 771 \ 

h I 

denotes a binomial coefficient. The j sum runs over 
those pair transitions which have a common transition 
frequency if one neglects the dipole perturbation. In 

TABLE II. Pair transitions (uncoupled scheme). 

AE = g(3H-2D 
g Q t 

AE = g@H 
q t 

AE = g(3H+2D 

3/2 
3/4 
3/2 
3/4 
3/4 
3/4 

- 9 / 4 
3/2 
1/4 

- V 2 
3/2 
3/2 

0 
- 3 / 2 

2 
- 5 / 2 
- 3 / 2 

3/2 

1 
1 
2 
2 
1 
1 

- 3 / 4 
3/4 

- 3 / 2 
3/2 

- 9 / 4 
9/4 

3 
- 3 

- 3 / 2 
3/2 
0 
0 

3/2 
3/4 
3/2 
3/4 
3/4 
3/4 

9/4 
- 3 / 2 
- 1 / 4 

1/2 
- 3 / 2 
- 3 / 2 

0 
3/2 

- 2 
5/2 
3/2 

- 3 / 2 

W. J. C. Grant, Ph.D. thesis, Department of Physics, MIT, 
Cambridge, Massachusetts, May 1962 (unpublished). 

Table III, we tabulate am, Vm', and (com)1/m up to 
w=6, for the (J, —J) and (f,|) transitions. We take 
#0=0.048988 A~3, or r0=2.73 A. The concentration is 
taken as 0.1%. For other concentrations n, the moments 
can be obtained to first order in n by multiplying the 
tabulated values by (0.001»1/m. The (com)1/m are given 
in megacycles. 

We,notice that the moment series shows no sign of 
convergence, at least, as far as the sixth moment. A con­
struction of the line from its moments is clearly im­
practical in this case. We also note the existence of odd 
moments for the (f ,§) transition. 

It is of some interest to compare our moments with 
those obtained by the usual methods. According to 
Van Vleck,10 the second moment is given by 

<«>> = » ( g W 2 ) E fi*-fl(3 cos*0y*-
k 

•\fa, (4) 

where a= 81/32 for the (J, — f) transition and 69/32 
for the (f,J) transition.3 If we replace the lattice sum 
by an integral from ro to oo, Eq. (4) becomes 

(a>2)=n(16wx0/15v)(gWti2)a. (5) 

This is to be compared with Eq. (68) of Ref. 1. 

(a>2) = n(l6TXo/15v)(gW2)Zgjqi2/Zgi- (6) 
j j 

Using the gj and qj of Table II, we obtain for the ratio 
of the j sums the values 81/32 and 69/32, in exact 
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FIG. 1. Fourier transform (magnitude). 
10 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
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FIG. 2. Fourier transform (angle). 
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agreement with the results derived by Manenkov and 
Prokhorov. 

We have not investigated the coincidence of our 
method and Van Vleck's for higher moments. 

IV. CALCULATION OF THE LINE SHAPE 

The physical line shape is a composite effect of the 
mutual interaction of the Cr3+ ions through dipole fields 
and through exchange forces and of their interaction 
with ions in the host lattice. From a computational 
point of view, we can think of two contributions to the 
Cr-Cr interactions—one from near neighbors whose 
positions must be taken into account exactly, and one 
from distant neighbors whose positions can be approxi­
mated by a continuous distribution. We first discuss 
the line shape derived on the basis of Cr-Cr dipole 
interaction only, assuming a continuous dipole dis­
tribution with inner cutoff radius TQ. Then we amalga­
mate the "inhomogeneous" portion of the line, arising 
from interactions with the host lattice. Finally, we take 
into account the contribution, both dipolar and ex­
change, from those neighbors which must be handled 
by a discrete sum. 

From Ref. 1, the line shape 1(a)) is the Fourier trans­
form of the relaxation function exp(—nV), where 

V(P) = lattice sum+E gjVj(p)/v £ gj. (7) 

derivatives at the origin in p space, are large; the asym­
metry in co space, though heavily weighting the mo­
ments because it occurs in the far wings, will for that 
very reason be scarcely observable. 

The results of inverting transforms such as shown in 
Figs. 1 and 2 are summarized in Figs. 3-7. 

0.004 O006 0008 
CONCENTRATION 

FIG. 3. Continuous distribution—(J, —J) transition—peak absorp­
tion (arbitrary units) versus concentration (mole fraction). 

The j sum has the same significance as in Eq. (2), and 
the Vj can be conveniently calculated from expansions 
given in part I, Eqs. (62)-(64). V' will, in general, be 
complex, with a symmetric real part and an antisym­
metric imaginary part. For the first step of the computa­
tion, we omit the lattice sum in Eq. (7). In Figs. 1 and 
2, we show the magnitude and angle of the complex 
transform, calculated for the (§,|) transition, a con­
centration ^=0.05%, and r0=6.3 A. The magnitude 
of the transform is almost an exponential of the form 
exp(— a\p\), with its cusp at the origin rounded into a 
Gaussian peak. The nonvanishing angle is directly 
connected with the nonvanishing odd moments, that is, 
with an asymmetry in the line. We notice, however, 
that the angle is very small and consists essentially of 
a few rapid wiggles near the origin. In frequency space, 
this implies a small effect, occurring in the wings of 
the line. The odd moments, proportional to the odd 

0.004 0.006 0.008 
CONCENTRATION 

FIG. 4. Continuous distribution—(J, — | ) transition—half-width 
(Mc/sec) versus concentration (mole fraction). 
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.004 .006 .008 
CONCENTRATION 

FIG. 5. Continuous distribution—(f,J) transition—peak absorp­
tion (arbitrary units) versus concentration (mole fraction). 

In the previous paper1 we discussed limiting line 
shapes, and we pointed out that for small n and small 
r o, the shape must be Lorentzian, whereas for large n 
and large ro it must be Gaussian. In the Lorentzian limit, 

half-width=Cin, 

peak intensity=C2+Cznr0*. 

In the Gaussian limit, 

half-width=C4^
1/V0-

3/2, 

peak intensity=C5^1/V0
3/2. 

The constants Ci through C5 depend on the crystal 
structure and on the transition under consideration, as 
indicated in Eqs. (59)-(72) of Ref. 1. In our figures we 
indicate these limiting forms, together with the exact 
calculated behavior. On Figs. 3 and 4, we show the 

(8) 

(9) 

(10) 

(U) 

LORENTZIAN APPROXIMATION 
GAUSSIAN APPROXIMATION 
EXACT VALUES 

r 0 »7. ISA 

.002 .004 .006 .008 .010 
CONCENTRATION 

dependence of intensity and half-width on concentra­
tion for the (f, — | ) transition. The exact calculated 
values for r0= 2.73 cannot be distinguished, on the scale 
of our graph, from the Lorentzian limit. Figures 5 and 6 
pertain to the (f ,J) transition. In Fig. 6 we show results 
for one ro only. In Fig. 7, we show the dependence of 
the half-width on r0. Although the Gaussian approxi­
mation and the actual behavior are wildly different in 
the region of interest, one can begin to see that they 
would asymptotically approach one another for very 
large r0. 

It is clear that in dilute crystals, the dipole inter­
action gives rise to line shapes of which neither the 
actual magnitudes nor the parametric dependences can 
be related to the second moment in any simple fashion. 

The second step in the computation involves interac­
tions between the Cr spins and other species in the host 
lattice. Such interactions are, at least to first order, 
independent of Cr-Cr interactions. In general, the joint 
effect of any number of statistically independent interac­
tions is obtained by convoluting the separate effects. 
This well-known statistical theorem11 underlies the 
terminology of "inhomogeneous" broadening intro­
duced into the present context by Portis.12 Interactions 
with neighboring aluminum nuclei, for instance, evi­
dently fulfill the independence criterion to an excellent 
approximation, for small Cr concentrations. The con­
tribution of such interactions can be isolated experi­
mentally as the residual line shape in the limit of 
vanishing Cr concentration. This residual shape is a 
Gaussian of half-width 17.8 Mc/sec. We discuss the 
origin of the residual line in Sec. VI. For now, we point 
out that 18 Mc/sec corresponds to the dipolar width 
at about 0.1% concentration, almost independent of 
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FIG. 7. Continuous distribution—(§, — |)otransition-
half-width (Mc/sec) versus r0(A). 

FIG. 6. Continuous distribution—(f,§) transition—half-width 
(Mc/sec) versus concentration (mole fraction). 

11W. Feller, An Introduction to Probability Theory and Its 
Applications (John Wiley & Sons, Inc., New York, 1957), Chap. 
11 and Chap. 12. 

12 A. M. Portis, Phys. Rev. 91, 1071 (1953). 
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the value assumed for r0 (see Fig. 4). This means that 
Cr self-broadening makes a very small contribution to 
the total line in "pink" rubies, and becomes predomi­
nant only in very dark rubies. Consequently, relations 
(8) and (9) do not apply to actually observed lines. 
Instead, for concentrations of the order of 0.01% one 
expects 

half-width « constant«17.8 Mc/sec (12) 

intensity <* n. (13) 

These relations are, in fact, experimentally verified. We 
notice that, whether the Gaussian broadening is present 
or not, the actual widths and intensities will not show 
the n112 dependence of the Gaussian approximation. 
The relations are always asymptotically linear. 

We also can now see why observed line shapes go 
from Gaussian to Lorentzian with increasing concentra­
tion. The dipolar line itself is almost pure Lorentzian 
at low concentrations, and begins to tend towards the 
Gaussian shape at very high ones. Because of the "in-
homogeneous" Gaussian contribution, however, this 
trend is at first reversed. The resulting oscillation 
between the two shapes is illustrated in Fig. 8 in terms 
of the relationship between the absorption width and 
the width of its derivative. The points shown are ex­
perimental ones. (See Appendix A.) 

The third step of the computation incorporates the 
lattice sum in Eq. (7) for near lying sites. Some, but 
not necessarily all, the spins situated at these sites will 
be exchange coupled to the reference spin. According 
to Eq. (29) of Ref. 1, 

V lattice { 

1 
- Z E Mc{l-expppco(r t-,gc)]} 

c ri<r\ 

+ E E pigu 
u r iO£<ro 

; i -expppw(r<,^) ]} . (14) 

The subscripts c and u refer to the coupled and un­
coupled representations which specify the g's and q's 
(Tables I and II) for large and small exchange, re­
spectively. Exchange is assumed large for r<rh neg­
ligible for r>ri. The lattice sum cuts off at r<>. The 
"clustering factor" pi is defined as the ratio of the 
actual probability that site i is occupied to the prob­
ability of occupation if the distribution were random. 

Abbreviating the notation by using a as an over-all 
index, we obtain the transform of the lattice sum as 
follows: 

/

OO 

dpe-™* e x p [ - n £ M « ( l - ^ " ) / E g/] 

-expi-n^Epaga/T, gj) 
a j 

/•OO 

X dpg-i"il+(n/Zgi)'Lpagafi
u^'l (15) 

LORENTZIAN SHAPE 
GAUSSIAN SHAPE 
CALCULATED SHAPE 

J I I 1 I I I U_J I > I I 
40 80 120 160 200 240 280 

ABSORPTION WIDTH (Mc/MC) 

FIG. 8. Absorption half-width (Mc/sec) versus p-p 
derivative width (Mc/sec). 

= exp(-nY, P«ga/H gj) 
a j 

X [ S ( « ) + ( n / E g y )E Pagat(«-««)] • (16) 
j a 

Here, 5 represents the delta function. The neglect of 
higher powers of n in the expansion of Eq. (15) in­
troduces only small errors for physically significant 
concentrations. 

Since the continuous distribution and the lattice sum 
appear as products in p space, the joint contribution in 
co space is obtained by convolution. In this sense, (16) 
embodies the satellite spectrum, and gives a simple 
prescription for joining it to the main line. We notice 
that the line shapes of the satellites and of the main 
transitions are interdependent. The possibility of clus­
tering can be taken into account at this point by varying 
the p^ Our numerical calculations all assume that the 
pa are equal, though not necessarily equal to unity. 

We exhibit in Figs. 9-12 the behavior of various line 
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FIG. 9. Absorption half-width (Mc/sec) versus 
concentration (mole fraction), 
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(1/2,-1/2) TRANSITION 
(3/2,+ l/2)TRANSITI0N 
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FIG. 10. Peak absorption (arbitrary units) versus 
concentration (mole fraction). 

shape parameters, calculated this time for the entire 
composite line. Strong exchange has been assumed as 
far as 7.15 A, which represents an upper limit to the 
exchange radius. The discrete sum has been carried to 
the same distance, with a continuous dipole density-
then extending to infinity. The points shown are experi­
mental ones and apply to the (J, —J) transition. We 
have assigned concentrations, not on the basis of our 
study of line shapes, since this would involve a circu­
larity in the argument, but on the basis of chemical 
analyses. We note that the points for two of the high-
concentration crystals fall consistently on curves with 
large p values. 

The four parameters whose concentration dependence 
we show in Figs. 9-12 obviously do not exhaust the 
line shape. To illustrate the type of agreement we 
obtain between calculation and experiment, we present 
in Fig. 13 an experimentally derived line shape against 
a background of theoretical line shapes bracketing the 
appropriate concentration. We stress that, as the con­
centration changes, the curves do not merely change 
scale, but undergo complicated changes in shape. This 
fact can be accentuated by using the derivative of the 
absorption and scaling the curves to identical peak-to-
peak values. We show such a set of curves in Fig. 14. 

We now revert to the question of asymmetry in the 
(f ,J) line. In Table IV, we summarize calculations for 

2 2 * 0 

£ 2 0 0 

W | 6 0 

1 120 
Ui 
0 
£ 80 
UI 
Q. 

Ul 
a. 

0 

(1/ 
(3/ 

2,-1/2) 1 
2,+1/2) 1 

\ 

•RANS 
RANS 

1 

(TIC 
ITIO 

N 
N 

= ^ 

P 

P* 

^ 

P«' 

« 1 - v 

1 
p«S 

S - . 

4 
/ 

! 

—f] 

f j 

A 

* 

.001 
CONCENTRATION 

.001 

CONCENTRATION 

FIG. 12. Peak-peak derivative height (arbitrary units) 
versus concentration (mole fraction). 

four concentrations to show the nature and extent of 
the expected asymmetry. The calculations were made 
under the same assumptions as those of Figs. 9-12, 
with p=l. We quote intensities for roughly the follow­
ing multiples of the half-widths: 0, 1, 2, 5. Intensities 
are given in arbitrary but consistent units; frequencies 
are in mc. It is obvious at a glance that it would be 
hopeless to see the asymmetry in a resonance experi­
ment. Conceivably it might be detectable in a cross-
relaxation experiment. 

V. NEAR-NEIGHBOR EFFECTS 

One of the striking features of Figs. 9-12 is the 
ineflectuality of the near neighbors at low concentra­
tions. The different p curves, for all the line shape 
parameters, merge for concentrations less than 0.05%. 
The relative unimportance of the near neighbors in 
dilute crystals can be understood from three considera­
tions: (1) The contribution of these neighbors to the 
absorption goes like n2. Intuitively, the number of pairs 
in a fixed region is proportional to n2] more formally, 
Eq. (16) shows that the near-neighbor perturbation 
scales by a factor n a line whose area is already propor­
tional to n. (2) While the near neighbors produce the 
largest single perturbations, the number of neighbors 
increases faster with distance than their individual per­
turbation decreases. (In Ref. 1, we met this phenomenon 
as a logarithmic divergence.) (3) The very largeness of 

-160 -120 - 8 0 - 4 0 0 40 80 
FREQUENCY (Mc/sec) 

120 160 

FIG. 11. Peak-peak derivative width (Mc/sec) versus 
concentration (mole fraction). 

FIG. 13. Calculated and experimental absorptions (arbitrary 
units) versus frequency (Mc/sec), for sample 3. 
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their individual perturbations make their effect relevant 
principally to the far wings of the line. 

As a consequence, for low concentrations, it makes 
no difference what one assumes about the near neighbors. 
Whether they are clustered or not, exchange coupled or 
not, considered as point dipoles or smeared into a con­
tinuous distribution—-none of this will significantly 
affect the observable central part of the line. We note, 
however, that the reverse is true of the moments. These 
quantities weight most heavily the far wings of the line, 
where the near neighbors produce a relatively large 
effect. If we ignore all the atoms outside a radius of, 
say 7.15 A, we pick up about 90% of the second 
moment; if we ignore all the atoms inside this same 
radius, we may pick up 90%, or more, of the line area. 

For concentrations higher than about 0.1%, the near 
neighbor contribution becomes significant, certainly as 
far as intensities are concerned. The effect of the near 
neighbors is to take power out of the central portion 
of the line and spread it more or less uniformly into the 

TABLE IV. Asymmetry in the (f ,J) transition. 

• CALCULATED 

-160 -120 -80 -40 0 40 80 
FREQUENCY (Mc/s«c) 

120 160 

FIG. 14. Scaled calculated and experimental derivatives (arbitrary 
units) versus frequency (Mc/sec) for sample 3. 

wings. More formally, the near neighbors can alter con­
siderably the exponential coefficient in Eq. (16), while 
affecting only slightly the line shape as a whole. Thus, 
the center intensity depends on the near neighbors 
exponentially while the compensation in area is spread 
over the whole spectrum. An actual decrease in in­
tensity at higher concentrations has been observed 
both by us and by Manenkov and Prokhorov.3 Our 
theory accounts for this phenomenon very naturally 
as an effect of clustering. We see from Figs. 9-12 that 
our crystal with ^=0.8% shows significant clustering 
effects, as does one of the crystals with = 0.3%. In con­
trast, the other crystal with n=0.3% was a high-
quality slow grown annealed crystal, and shows no 
significant evidence of clustering. The correlation be­
tween the quality of a crystal and the p values assign­
able to its line shape characteristics is a very interesting 
and useful confirmation of our calculations. 

The observed decrease in intensity cannot be ac­
counted for, at least for the (J, — | ) transition, by 

n=0.0003 
frequency 

»=0.001 
frequency 

/(-co) 

» = 0.010 
frequency 

/(co) 
/ ( - c o ) 

0 
0.8530 
0.8530 

0 
1.9200 
1.9200 

0 
3.735 
3.735 

21 
0.4075 
0.4071 

28 
0.9107 
0.9061 

125 
2.054 
1.973 

39 
0.08742 
0.08677 

53 
0.2752 
0.2715 

275 
0.5960 
0.4818 

102 
0.00515 
0.00550 

121 
0.03338 
0.03311 

660 
0.04729 
0.08265 

exchange. As we shall now show, exchange can have only 
a minuscule effect on the line shape of this transition. 

As we have pointed out previously,1 exchange causes 
detailed and specific changes in the energy structure. 
These changes cannot in this case be adequately ac­
counted for by replacing them with an averaged correla­
tion effect, or by invoking the 10/3 factor13 in blanket 
fashion. In the present case, the J = 2 manifold in the 
coupled scheme contributes very nearly as much to the 
(§> ~~i) transition as would have been contributed in 
the uncoupled scheme. In Table V, we compare the 
results derived from considering exchange large or small, 
for neighbor shells 8-16. The differences are negligible. 
Despite the existence of strong exchange, this line is 
in no sense exchange narrowed. 

Exchange narrowing does occur for the (f ,J) transi­
tion. The reason is that the coupled scheme contributes 
very little to this transition, compared with the un­
coupled scheme. Nevertheless, for this line too, the 
modification of the observed line shape by exchange is 
negligible at low concentrations. The parameters for 
exchange narrowing are derived by reference to mo­
ments, and the half-width is not related to moments in 
dilute systems. Exchange affects the extreme wings of 
the line, altering the moments without altering appreci­
ably the shape of the central hump. 

VI. THE RESIDUAL WIDTH 

We now consider the problem of the residual width 
of 18 Mc/sec. We shall first consider various explana-

TABLE V. E 

Concentration 
(%) 
0.02 
0.04 
0.1 
0.2 
0.4 
0.9 

ffect of exch ange on 

Absorption peak 
/ = o o 

24.8 
42.4 
71.9 
91.3 

105 
119 

7 = 0 

25.4 
43.2 
72.9 
92.0 

105 
114 

the (J, — £) transition. 

Absorption 
(Mc/ 

J=oo 

19.8 
22.0 
29.5 
44.1 
76.3 

151 

half-width 
sec) 

J = 0 

19.8 
22.0 
29.6 
44.4 
76.8 

153 

13 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 
(1953). 
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tions that have been offered for this phenomenon, and 
then propose an alternative explanation of our own. 

Perhaps the most widely used scapegoat for un­
explained line shape phenomena is the crystal field. 
We can rule out the crystal field, however, because the 
crystal field does not appear in the transition energy 
of the (^, —J) transition. Furthermore, df/d6=0 at 
our 0° orientation, so that small angular variations in 
the crystal field cannot affect the (f ,J) transition either. 
The two transitions do in fact approach, within experi­
mental error, the same limiting linewidth. One could 
argue that the crystal field also affects the g value, and 
that slight variations in this factor might produce 
noticeable effects at fields of a few thousand gauss. 
These variations would be field-dependent, however, 
and the residual width is the same for transitions at 
840, 3300, and 7400 G. We can show how completely 
impossible this supposition is by a very simple calcu­
lation. If we believe the crystal field approximation, 
the spin Hamiltonian, with H = HZJ can be written14 

5 C = 2 . 0 0 2 ( 1 - X A ) ^ 5 , - X 2 A ^ 2 , (17) 

where X is the spin-orbit coupling constant, and A is a 
second-order sum over higher orbital states. We 
identify g=2.002(l-XA) and D=\2A. A fractional vari­
ation of a in the crystal field will cause A to go into 
A(l=FcO. Consequently, ggoesinto[2 .002-0.018( lTa)] 
and 2D goes into 11.5 ( l T a ) kMc/sec. The numbers 
are such as to match the experimental ones for a = 0 . 
The energy spread due to Ag will be (0.018Xl.4#)o: 
Mc/sec; that due to A(2D) will be 11.5a kMc/sec. If 
# = 3 3 0 0 G, the broadening effect of the crystal field 
via the D term will be 160 times as great as via the g 
factor. If we ascribe a residual 18 Mc/sec to the g 
factor, then the (f ,^) transition should be broader than 
the (J, — J) transition by 3 kMc/sec. 

We cannot ascribe the residual width to clustering. 
This explanation originates in the fact that clustering 
will enhance the second moment, and consequently will 
broaden the line. As we have seen at length, this argu­
ment is a nonsequitur. The enhancement of the second 
moment is produced by slightly enhancing the far wings 
at a slight expense of intensity in the main line. The 
line shape of the central hump is changed very little. 
At low concentrations, the effect of clustering vanishes 
for all practical purposes. 

Macroscopic clustering, that is, macroscopic com­
pared to lattice dimensions, may contribute to the 
residual width, but cannot be the total cause. Such 
inhomogeneities raise the effective concentration and 
reduce the effective crystal volume, giving a broader 
and less intense line. The line produced, however, 
would be (almost) Lorentzian, while what is observed 
is practically pure Gaussian. To keep the shape Gauss­
ian, the dipolar contribution must be substantially 

14 W. Low, in Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1960), Suppl. 2. 

less than half, or less than 9 Mc/sec. The chromium 
"pockets" must then have a concentration less 0.05%. 
At any rate, at least 10 Mc/sec must still be accounted 
for otherwise. 

We consider the possibility of impurities. The pres­
ence of small quantities of other paramagnetic impuri­
ties is a priori a plausible supposition. In fact, Thorp 
et al.n have found 0.04% iron in flame fusion rubies, 
independent of the chromium concentration. This 
amount of impurity is of the right order to account for 
the residual width. For rubies grown from the vapor 
phase, they find a constant iron concentration of 
0.004%. I t would have been interesting if they had 
made measurements of residual width on these two 
types of specimens. We do not believe that impurities, 
iron or otherwise, are the explanation, however. An 
amount of iron, such as observed by Thorp et al., 
would produce an immense spectrum of its own, which 
is not generally observed, although Thorp did observe 
it in his particular specimens. Furthermore, substan­
tially the same residual width has been observed not 
only by us, but by many other experimenters. I t would 
be difficult to account for the presence of exactly the 
same impurity content in many different rubies, both 
natural and synthetic. This difficulty becomes even 
more severe if the impurities are not simply iron, but a 
large number of different species. The number would 
have to be very large for their individual spectra to be 
unobservable. Yet their combined effect would always 
have to give rise to the same linewidth. Furthermore, 
the same residual width is found in rubies whose 
chemical content is analytically controlled and verified. 
Furthermore, the line shape due to impurities in trace 
amounts must be Lorentzian; what is observed is 
clearly a Gaussian shape. Furthermore, paramagnetic 
impurities would clearly affect the static susceptibility. 
The work of Daunt and others16-21 shows that the sus­
ceptibility can be matched to the chromium four-level 
system from room temperature to 0.3 °K, over a chro­
mium concentration range from 0.047% to 1.4%. We 
note that an impurity content of 0.04% would change 
the susceptibility by a factor of 2 in the lowest concen­
tration studied by Daunt, even if we make the un­
believably unlikely assumption that the partition func­
tion of the impurity is the same as that of chromium. 
(Daunt claims an accuracy of 5%.) While it is doubt­
less possible to make rubies with an iron or other im­
purity concentration comparable to the chromium con-

15 J. S. Thorp, J. H. Pace, and D. F. Sampson, British J. Appl. 
Phys. 12, 705 (1961). 

16 K. Brugger, J. W. Snider, J. G. Daunt, The Fifth International 
Conference on Low Temperature Physics, edited by J. R. Dillinger, 
University of Wisconsin Press, Madison, Wisconsin, 1958), p. 547. 

17 J. G. Daunt and K. Brugger, Z. Physik. Chem. 16, 203 (1958). 
18 H. L. Davis, Z. Physik. Chem. 16, 213 (1958). 
19 J. G. Daunt, Proc. Phys. Soc. (London) 70, 54 (1957). 
20 J. G. Daunt, D. O. Edwards, M. Dreitman, R. C. Pandorf, 

and J. W. Snider, Proceedings of the Seventh International Con­
ference on Low Temperature Physics (Toronto University Press, 
Toronto 1960), p. 96. 

21 J. G. Daunt, Bull. Am. Phys. Soc. 1, 116 (1956). 
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centration, there is no reason to believe such crystals 
are typical. 

We consider spin-lattice interactions. At room tem­
perature these can account for about 1 Mc/sec.22 

Sugihara23 has proposed a theory of virtual phonon ex­
change from which he derives a broadening comparable 
to dipolar broadening. We make two general comments: 
(1) Sugihara obtains a perturbation comparable to the 
dipolar one on the basis of interaction with another 
dipole situated about a lattice dimension away; in 
other words, he considers the nearest neighbor in a 
dilute crystal. His interaction falls off as 1/r3. But we 
have already seen that such an interaction, far from 
rapidly becoming negligible with distance, actually di­
verges as more neighbors are taken into account. 
Sugihara's theory leads to an infinite self-energy. 
Perhaps a renormalization is possible, but it seems 
to us that so far we have the first term in a diverging 
series. (2) The virtual phonon exchange is possible only 
if the two spins have exactly the same transition energy. 
If the line is already broadened, however, the number 
of spins that fulfill this requirement will be tremendously 
smaller than the actual number of spins. What is really 
required is a second-order theory which takes into 
account the simultaneous interaction with the phonon 
field and the dipolar field. Only if the excess energy 
is at the same time absorbed by the dipole field can 
two spins of even slightly different transition frequen­
cies interact via a virtual process. 

Virtual processes, in general, would require a pair of 
Cr ions, and would therefore give rise to a concentration-
dependent process. That such processes make only a 
small contribution, if any, emerges from the fact that 
we have already interpreted, with considerable pre­
cision, all observed features of the concentration de­
pendence by invoking only known mechanisms. 

Hyperfine interaction with the Cr53 nucleus (10% 
natural abundance) certainly exists. Its observation, 
both in ordinary rubies and in crystals enriched with 
Cr53, was first reported by Manenkov and Prokhorov.24 

The hyperfine separation is of the order of the residual 
width. At low-chromium concentrations, the multiplets 
are resolvable even in unenriched crystals, although 
their intensity is exceedingly low. This interaction 
clearly does not help us to solve our present problem. 

We now consider magnetic dipole interaction with the 
aluminum nuclei. We show in Appendix B that this 
interaction accounts for 5.12 Mc/sec. Since Gaussians 
add width in rms fashion, subtracting 5.12 from 18 still 
leaves 17 Mc/sec to be accounted for. 

We finally come to our own suggestion for the origin 

22 A. A. Manenkov and A. M. Prokhorov, Zh. Eksperim. i Teor. 
Fiz. 38, 729 (1960) [English transl.: Soviet Phys.—JETP 11, 527 
(I960)]. 

23 K. Sugihara, J. Phys. Soc. Japan 14, 1231 (1959). 
24 A. A. Manenkov and A. M. Prokhorov, Zh. Eksperim. i Teor. 

Fiz. 31, 346 (1956) [English transl.: Soviet Phys.—JETP 4, 228 
(1957)]. 

of the residual width. The existence of covalent bonding 
in so-called ionic crystals is well known. Low25 has 
given convincing arguments for the bonding of iron 
group ions to neighboring anions in MgO; Tinkham26 

has done the same for ZnF2. To explain the residual 
width, we suggest that there may be a slight bonding 
to the aluminum. This could be either super exchange,27 

via the oxygens, or direct overlap. A slight admixture 
of aluminum 3s wave function would carry with it a 
contact interaction with the Al nucleus, which could 
supply the energy perturbation we are looking for. 
We proceed to calculate, in an admittedly crude ana 
"order of magnitude" fashion, the amount of Al 3s wave 
function we would need. If we write the wave function 
of a Cr 3d electron as 

^ = ^ C r + € ^ A l , (18) 

and if A is the hyperfine separation for a 3s electron in 
Al, then the energy resulting from the contact interac­
tion is of the order or 3e2A. (There are three 3d electrons 
in Cr.) The hyperfine separation has been measured for 
atomic aluminum28 and is 1450 Mc/sec. Atomic alu­
minum has one 3p electron. If we use the theory of 
Fermi29 and Goudsmit,80 we can obtain the hyperfine 
separation for one 3s electron by an analogy argument. 
The ratio of the 3s separation to the 3p separation is 
given by 

A(35)/A(3*)= (8 /3) (L+l /2) ( / ) ( /+ l ) = 3 , (19) 

where, of course, we gloss over corrections for effective 
charge and shielding. This line of reasoning leads to 
a value e=0.036. This number is not obviously 
unreasonable. 

Our hypothesis is attractive because it would also 
shed light on several other observations. Very narrow 
electron paramagnetic resonance lines are observed in 
MgO, where the spectra of the iron group have been 
exhaustively investigated by Low,25'31 and in the Th02, 
where the spectrum of Gd has been studied by Shaltiel 
and Low.32,33 There is no isotope of Th which has a 
nuclear moment; Mg25 has a small nuclear moment, 
but its abundance ratio is only 10%. On the other hand, 
the electron-nuclear double resonance experiments of 
the Ford group34-36 leave no doubt that interactions 
exist between the Cr electrons and the Al nuclei—-not 

25 W. Low. Ann. N. Y. Acad. Sci. 72, 69 (1958). 
26 M. Tinkham, Proc. Roy. Soc. (London) A236, 535, 549 

(1956). 
27 P. W. Anderson, Phys. Rev. 115, 2 (1959). 
28 H. Lew, Phys. Rev. 76, 1086 (1949). 
29 E. Fermi, Z. Physik 60, 320 (1930). 
30 S. Goudsmit, Phys. Rev. 37, 663 (1931). 
31W. Low, Phys. Rev. 105, 801 (1957). 
32 D. Shaltiel and W. Low. Phys. Rev. 124, 1062 (1961). 
33 W. Low and D. Shaltiel, Phys. Chem. Solids 6, 315 (1958). 
34 J . Lambe, N. Laurance, E. C. Mclrvine, and R. W. Terhune, 

Phys. Rev. 122, 1161 (1961). 
36 R. W. Terhune, J. Lambe, G. Makhov, and L. G. Cross, Phys. 

Rev. Letters 4, 234 (I960). 
36 C. Kikuchi, J. Lambe, G. Makhov, and R. W. Terhune, J. 

Appl. Phys. 30, 1061 (1959). 
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merely the nearest-neighbor nucleus, but distant nuclei 
as well. A completely satisfactory explanation of their 
results has not yet been found. I t is possible that an 
attempt to interpret these experiments in terms of 
contact interaction, via direct overlap and/or super-
exchange, might prove fruitful. 

SUMMARY 

We have been able to give a detailed account of many 
of the observed features of the ruby line shapes. We 
have been able to show clearly the effects of Cr-Cr 
dipole interaction, exchange, dipole (tensor) interaction 
with Al27, and the physical disposition of the impurities 
in the lattice. We have found that careful analysis is 
needed to interpret the data consistently. A number of 
general concepts that have passed into the general lore 
of the subject actually are applicable only asymptotic­
ally to special cases, which do not include ruby. 
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APPENDIX A: EXPERIMENTAL DATA 

Room-temperature measurements of ruby linewidths 
and intensities as a function of concentration have been 
published by Manenkov and Prokhorov.8 We have made 
measurements covering the same concentration range, 
for two reasons: (1) Our theory is sensitive not merely 
to widths but to the details of the line shape. Hence 
we found it desirable to subject the measured lines to 
very detailed analysis. (2) The definition of half-width 
in Ref. 3 seems somewhat uncertain. The definition 
explicitly given there is the distance from the peak to 
the half-power point; yet the data quoted are consistent 

with data previously given by the same authors37 if 
their half-widths are interpreted as peak-to-peak deriva­
tive widths. This latter interpretation also makes their 
data quite consistent with our own. 

We used six rubies, all grown by the flame fusion 
process. Two of these, No. 1 and No. 4 were slow grown 
annealed crystals. All the crystals were free of macro­
scopic inhomogeneities. Small specimens weighing about 
15 mg were cut, for study with an X-band cavity 
spectrometer. Our determination of widths is accurate 
to within 2 % ; of relative intensities, to about 10%. 

The experimental derivative traces were digitalized 
and were integrated by means of a computer program. 
The program allowed automatic corrections for various 
experimental conditions. I t also generated a Gaussian 
and a Lorentzian to match the peak value and half-
width of the experimental absorption. Thus our judg­
ment regarding the shape of the line—-Gaussian, Lorentz­
ian, or intermediate—is not based on the measurement 
of four points, but of about a hundred. An example of 
the curves obtained by this procedure is given in Fig. 15. 
The program integrated the absorption a second time to 
give the area. We investigated the effect of noise and 
base-line drift on the results. Half-widths proved quite 
insensitive, line shapes somewhat sensitive, and areas 
extremely sensitive. Thus a 2% uncertainty in half-
width might typically be associated with a 2 5 % un­
certainty in area. For this reason, we feel that concen­
tration measurements based exclusively on absorption 
areas are not very reliable. 

The Cr concentration of the crystals was measured 
by a variety of methods, principally chemical analysis 
leading to either a spectrographic or colorimetric de­
termination. These determinations appear to be re­
producible within about 20%. The concentration is, of 
course, also proportional to the area of the reso­
nance line. 

In Table VI, we summarize the data. Widths are 
given in megacycles. Intensities are in arbitrary units, 
scaled so that the corresponding intensity for the 
(h ~~i) transition of sample No. 4 is 100. Areas are 

400r— 

36oU 

320H 

28o|-

9 2 4 0 h 

§20oU 
CO 

§ I60h 

I20h 

8 0 h 

4 0 h 

LORENTZIAN 
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o I FIG. 15. Experimental absorption 
and comparison curves (arbitrary 
units) for sample 3. 

-12 

H-16 

3230 3240 3250 3260 3270 3280 3290 3300 3310 
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3320 3330 3340 3350 3360 3370 

37 A. A. Manenkov and A. M. Prokhorov, Zh. Eksperim. i Teor. Fiz. 31, 346 (1956) [English transl.: Soviet Phys.—JETP 4, 288 
(1957)]. 
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TABLE VI. Experimental data. 

Sample number 
Concentration (%) 

rDeriv. p-p height 
Deriv. p-p width 

(h ~~i) i Absorption peak 
Absorption width 

lArea 

rDeriv. p-p height 
Deriv. p-p width 

(f )i) "S Absorption peak 
Absorption width 

lArea 
(f,J) width/(J, - J ) width 
(f,J) area/(J, — | ) area 

1 
0.031 

96 
36.7 
34 
21 
0.036 

54 
37.6 
18 
23.4 
0.026 
1.11 
0.72 

2 
0.035 

116 
38.7 
44 
22.9 
0.05 

62 
39.8 
21 
25.6 
0.031 
1.12 
0.63 

3 
0.20 

134 
57.3 
88 
40.1 

0.19 

40 
85.3 
34 
57.4 
0.12 
1.43 
0.63 

4 
0.32 

100 
81.2 

100 
58.0 
0.30 

44 
91.3 
45 
65.8 
0.18 
1.13 
0.60 

5 
0.32 

70 
100 
81 
71 
0.28 

23 
122.5 
31 
89.5 
0.17 
1.28 
0.62 

6 
0.79 

28 
184 
69 

130 
0.56 

8 
283 
25 

203 
0.32 
1.56 
0.57 

scaled so that the area of the same transition is 0.3. 
By " width" we mean the half-power half-width. 

The ratio of the area for the (f , | ) transition to that 
of the (§, — | ) transition should be the same as the 
ratio of the transition probabilities, namely 0.75. In 
view of the uncertainty in the determination of the 
areas, the deviations from this number are in them­
selves not significant. The systematic trend to lower 
ratios with increasing concentration might be inter­
preted as an effect of exchange, which, as we have 
shown, affects the (f , | ) transition much more than the 
(h ~i) transition. However, an underestimate of the 
area becomes more likely with increasing width. This 
factor would give rise to the same trend, since the 
excess width of the (§,|) transition becomes much more 
marked at higher concentrations. 

This excess width of the (f,J) transition is not 
accounted for by our calculation. The mechanisms in­
cluded in our calculation predict a narrower, not a 
broader, line for this transition. We notice that (1) the 
excess broadening tends to increase with increasing con­
centration, (2) the annealed crystal No. 4 shows mark­
edly less excess broadening than its conventionally grown 
neighbors of similar concentration. Both facts can consis­
tently be explained by ascribing the excess width to 
random variations of the crystal field parameter Z>, due 
to internal crystalline strains. Such strains tend to in­
crease with increasing impurity content and are de­
creased by an annealing process. Since df/dd=0 at our 
0° orientation, small variations in the direction of the 
crystal field will have no effect; what we appear to be 
seeing are variations in magnitude. 

APPENDIX B: DIPOLE INTERACTION WITH 
ALUMINUM NUCLEI 

The contribution of the Cr-Al interaction to the Cr 
resonance line shape can be calculated in exactly the 
same fashion as the contribution of the Cr-Cr inter­
action. A full-scale calculation is unnecessary in this 
case, however, since the Al concentration is virtually 

100%, guaranteeing an almost pure Gaussian line. A 
second moment calculation will suffice. 

In this Appendix, we treat, more generally, the inter­
action of two different paramagnetic species. Two 
species are considered different if, in a given magnetic 
field, none of the transitions of one species overlaps 
any of the transitions of the other. Our discussion has 
two parts. First we discuss the particular version of the 
moment formulation that is applicable in this case; 
secondly, we calculate the relevant lattice sum for ruby. 

(1) Van Vleck's10 moment method applies directly 
only to a set of simple Zeeman levels. If there is a zero-
field splitting, the theory must be modified, as shown 
by Abragam and Kambe,38 Kambe and Usui,39 and 
Ishiguro, Kambe, and Usui.40 Projection operators are 
then used to single out that portion of the transition 
operator Sx which connects the particular states under 
consideration. 

One can readily see, however, that the original Van 
Vleck formulation, unembellished by projection opera­
tors, will in all cases give the correct result if the 
broadening is due to another magnetic species. The 
dipolar broadening is in general due to two effects. One 
is the spread of the local magnetic field due to the 
other dipoles; the other is the simultaneous flipping of 
two spins, with exchange of energy. The different 
species cannot contribute to the flipping process, be­
cause the transition energies are, by definition, not 
comparable. But it can contribute to the variations of 
the magnetic field. I t is clearly only the flipping term 
that is affected by projection operators. 

We can put this idea more formally. Consider the 
Hamiltonian 

H=Ho+H', (Bl) 

where Ho contains all forms of energy, except that of the 
dipolar interaction with some other species. This last 

38 A. Abragam and K. Kambe, Phys. Rev. 92, 894 (1953). 
39 K. Kambe and T. Usui, Progr. Theoret. Phys. (Kyoto) 8, 302 

(1952). 
40 E, Ishiguro, K, Kambe, and T, Usui, Physica 17, 310 (1951). 
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interaction is contained in Hr. 

H' = J^k CjkSzjSzk, (B2) 

Cjk= (gfP/hfji?) (3 cos2*,*-1), (B3) 

where the 7th atom is the one we are considering and 
the atoms indexed on k are those of the other species. 
Using the notation Sx for the projected Sx3- operator, 

<co2) = - T r ( # , S x ) 2 / T r ( S , ) 2 . (B4) 
Now 

(H,$x)*=Z(Ho,$x)+(H',$x)J (B5) 

= (H0ySx)
2+ (H',Sxy+£(HoA), (H'An+. (B6) 

The trace of the cross term in (B6) vanishes because 
TrSZk = 0. The first term in (B6) simply yields (co0

2) by 
definition. The term of interest is the second one. Since 
Sx commutes with SZk, we have essentially a constant 
time Sz]: 

(KSzhSx) = iKSy. (B7) 
Since 

Tr(5,)2 = Tr(5*)2 , (B8) 

the result of the second term is just K2, or specifically 

X) CjkCjk'SZ7cS2]c'. (B9) 
kk' 

We note that the effect of projecting Sx has cancelled 
out. From this point on, we are coincident with Van 
Vleck's treatment of the unsplit Zeeman multiplet. The 
trace over the operator (B9) vanishes unless k = k', and 
we obtain 

Tr £ Cjk*SJ=±S(S+l)Z Cjk\ (BIO) 
k k 

where S refers to the spin of the "other" species. 
(2) We now evaluate the sum in (BIO), using crystal 

parameters appropriate for ruby. Since the crystal sym­
metry greatly simplifies the explicit calculation, we 
refer angles to the crystal axis. 

(3cos20y*-l)2 

= (4 /5)+ ( 8 / 7 ) P 2 ( c o s ^ ) + (72/35)P4(cos^) (Bl l ) 

= (4 /5)+ (32TT/21)2: F2w*(fo,^r)r2„(0*,*jb) 
m 

+ (32T/35)ZYim*(0H,<pH)Y4m(dk,<pk). (B12) 
m 

The threefold symmetry about the z axis leads to non-
vanishing contributions only for m equal to an integral 
multiple of 3. Hence 

E Q*2= i2gcrW/34A2 E o-r6 

k i 

X {(1 /5)+ (10/21)P2o(cosft)fto(cosfe) 

+ (18/35)P4O(COS^)P4O(COS6>H)+ ( 1 / 4 9 0 0 ) P 4 8 ( C O S ^ ) 

XP^{CO^9H) cos(3<po,—3£>#)}. (B13) 

Here, i labels sets of equivalent atoms, that is, three 
atoms that go into each other under a 120° rotation 
about the z axis, and <poi is the angle of the projection 
of rn with the x axis. We define the x axis such that 
the next-nearest neighbor in the positive z direction 
has rx=Q. 

The lattice constants41'42 used were #(hex) = 4.7664 
A, c—13.0146 A, nearest-neighbor distance=2.73 A 
= 0.210c. The sum was carried out over 342 atoms, or 
over a sphere of radius 4.5 times the nearest-neighbor 
distance. This guarantees an accuracy of at least 1%. 

The result of the summation is (in cgs units): 

Z C y , 2 = gCr2gAl2^4A2Xl045 

k 

X[16.42-19.60 cos20#+18.70 cos4fe 

-10 .32 sin30H cosfe cos3 <?//]. (B14) 

For dH=0, this result reduces to 1.552X1046. 
To complete the calculation, we used the following 

constants: 

g C r = 1.9840, gAi=1.4563/1836,43 

d / / d # = 2 . 8 0 M c / s e c / G 

for 0° orientation. We then obtain for the nuclear width 

rms width=4.36 Mc/sec= 1.57 G. (B15) 

For a Gaussian line, half - width = 1.177 X rms width; 
here 

half-width=5.12 Mc/sec= 1.85 G. (B16) 

We note that Eq. (B14) predicts an angular depend­
ence of the rms width, both in 6 and in <p. Because of 
the small contribution of the nuclear dipole interaction 
to the total linewidth, it would be hopeless to observe 
this dependence. The Cr-Cr rms width is, of course, 
given by the same crystal sum. The angular dependence 
is not given correctly by (B14) in this case, however. 
Because of the zero-field terms of the Hamiltonian, 
which cannot now be ignored, a change in angle in­
volves a change or a "mixing" of the energy levels. 
Such a change requires a different projection of Sx and 
a different truncation of the Hamiltonian. Even sc, 
the appearance of <p in the formula at least raises the 
question whether a dependence on this angle could not 
actually exist. 

APPENDIX C: ALUMINUM NUCLEAR MAGNETIC 
RESONANCE LINE SHAPE 

Our main object in this Appendix is to clarify the 
question of analogy arguments in the context of line 
shapes, and to indicate the relative effect of self-

41 G. Shinoda and Y. Amano, X-Rays (Japan) 6, 7 (1950). 
42 R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, 

Inc., New York, 1957), Vol. 2, Chap. 5, pp. 4, 13b. 
43 N. F. Ramsay, Nuclear Moments (John Wiley & Sons, Inc , 

New York, 1953), Chap. 4 
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broadening and Cr broadening on the aluminum nu­
clear magnetic resonance width. 

The Al-Al broadening cannot be derived from the 
Cr-Cr broadening. For Al, the concentration is almost 
1, and the self-broadened line will be close to Gaussian; 
for Cr, the small concentration produces a Lorentz line. 
The two line shapes have completely different proper­
ties, as we have taken pains to stress. Thus, there is no 
easy theoretical bridge between observed line shapes of 
the Cr resonance and observed line shapes of the 
Al resonance. 

On the other hand, a straightforward second moment 
calculation will describe the Al-Al width to a reasonable 
approximation. The result will differ from the second 
moment of the Cr-Cr interaction, because of the differ­
ent g factors and spins, and because of numerical 
coefficients arising from projecting the transition out 
of a different manifold. For Cr, the ratio of the pro­
jected moment to the simple Zeeman multiplet moment 
is 0.9. We shall not worry about errors of the order of 
10% here, and calculate without projection operators. 
Using the crystal sum (33), we obtain for the full rms 
linewidth of the self-broadened nuclear resonance 
1.85 kc/sec. 

The broadening effect of Cr on Al, again, has no 
analogy to the broadening effect of Al on Cr. Para­
doxical as this statement sounds, it is nonetheless true, 
because of the incommensurability of the line shapes 
derived from these interactions. The effect of Cr on Al 
is analogous to the effect of Cr on Cr, in the sense that 

both give rise to Lorentz shapes, differing principally by 
scale factors. The difference is not only in the g factors, 
of course. We again have the problem of projecting 
transitions from different manifolds, and the problem 
that one case is heterogeneous broadening while the 
other is self-broadening. We shall again ignore the first 
difficulty, and approximate the second by the well-
known § factor. From our calculation of Cr-Cr broaden­
ing, discussed in Sec. IV, if we take ro=2.73 A (the 
nearest-neighbor distance), we obtain in the limit of 
vanishing concentrations, 

peak-peak derivative width=2.1X104 n Mc/sec. (CI) 

After making the appropriate corrections, this number 
becomes, for the Cr-Al effect, 

peak-peak derivative width = 0.9X104 n kc/sec. (C2) 

The Al nuclear resonance has been measured by 
Pound44 and by Strandberg45: Pound observes a p-p 
width of 4 kc/sec; Strandberg observes a p-p width of 
8.7 kc/sec. Pound's number is insignificantly larger 
than the 3.7 kc/sec we calculate on a pure Al-Al basis. 
Strandberg's could be interpreted in terms of a 0.085% 
Cr concentration. 

44 R. V. Pound, Phys. Rev. 79, 685 (1950). 
45 M. W. P. Strandberg, Tenth Quarterly Progress Report, 

Signal Corps Contract DA36-039-SC-74895, Research Laboratory 
of Electronics, MIT, Cambridge, Massachusetts, 15 February 
1960 (unpublished). 


